Design and Analysis of a Low Power High Speed 1 Bit Full Adder Cell Based On TSPC Logic with Multi-Threshold CMOS

ثبت نشده
چکیده

An adder is one of the most integral component of a digital system like a digital signal processor or a microprocessor. Being an extremely computationally intensive part of a system, the optimization for speed and power consumption of the adder is of prime importance. In this paper we have designed a 1 bit full adder cell based on dynamic TSPC logic to achieve high speed operation. A high threshold voltage sleep transistor is used to reduce the static power dissipation in standby mode. The circuit is designed simulated in TSPICE using TSMC 180nm CMOS process. Average power consumption, delay and power-delay product is measured which showed considerable improvement in performance over the existing full adder designs. Keywords—CMOS, TSPC, MTCMOS, ALU, power gating, pipelining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Simulation of a 2GHz, 64×64 bit Arithmetic Logic Unit in 130nm CMOS Technology

The purpose of this paper is to design a 64×64 bit low power, low delay and high speed Arithmetic Logic Unit (ALU). Arithmetic Logic Unit performs arithmetic operation like addition, multiplication. Adders play important role in ALU. For designing adder, the combination of carry lookahead adder and carry select adder, also add-one circuit have been used to achieve high speed and low area. In mu...

متن کامل

Symmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)

Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...

متن کامل

A Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units

In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...

متن کامل

A High-Speed Dual-Bit Parallel Adder based on Carbon Nanotube ‎FET technology for use in arithmetic units

In this paper, a Dual-Bit Parallel Adder (DBPA) based on minority function using Carbon-Nanotube Field-Effect Transistor (CNFET) is proposed. The possibility of having several threshold voltage (Vt) levels by CNFETs leading to wide use of them in designing of digital circuits. The main goal of designing proposed DBPA is to reduce critical path delay in adder circuits. The proposed design positi...

متن کامل

Low-Power Adder Design for Nano-Scale CMOS

A fast low-power 1-bit full adder circuit suitable for nano-scale CMOS implementation is presented. Out of the three modules in a common full-adder circuit, we have replaced one with a new design, and optimized another one, all with the goal to reduce the static power consumption. The design has been simulated and evaluated using the 65 nm PTM models.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014